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Abstract 

In the process of Reverse Engineering (RE), higher density of measured data from all kinds of parts with complex curved surface will 

not only lead to lower efficiency in computing, storing and data processing, but also affect the fairness of reconstructed surface. 

According to the advantages and disadvantages of common algorithms, an algorithm for data reduction is proposed in this paper, in 

which the neighbourhood search method based on the point cloud’s curvature is used. With the utilization of proposed algorithm, 

high precision and the desired effect can be ensured. Finally, a roller bit’s data cloud, as an example, is reduced efficiently and 
validly by the algorithm in this paper. 
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1 Introduction  

 

As an advanced manufacturing method, RE employs the 

digital technology for measurement and Three-

Dimensional (3D) model reconstruction. Based on the 3D 

reconstruction model, the products with defects and 

deficiencies can be redesigned and remanufactured 

according to such analyses as mechanics, dynamics and 

so on. In the RE process, a crucial work is to obtain and 

process the data of objects surface.  

The digital data obtained through the 3D laser or 

camera scanner are regarded as the point cloud. When the 

measurement is required by a complex curved surface, 

especially for some quadratic surface and cubic surface, 

lots of sufficient data are needed to be measured. 

However, due to too much sampled points on the 

reconstructing surface, the computer will be made too 

slow to implement the storage and calculation and the 

surface will be made less smooth. So it is necessary to 

reduce the point cloud data according to the 

characteristics and requirements of reconstruction parts 

[1-4, 14].  

 

2 The common algorithm of data reduction 

 

Chen et al [5] put forward a method through which the 

measured data can reduce data point through reducing 

triangular mesh generated directly by itself in 1999. Lee 

et al presented a data reduction method for laser scanning 

and measuring, including the minimum distance, angle 

deviation method and uniform grid method. The 

Preceding methods have the common shortcoming, that 

is, difficult to determine the boundary point cloud data. 

Shang et al. [6] put forward the adaptive minimum 

distance method based on the above methods. By means 

of this method and based on the principle that the smaller 

minimum distance is chosen in mutation and transitional 

regions and the larger minimum distance is chosen in flat 

regions, the minimum distance is firstly chosen for data 

points in each zone according to the accuracy and 

curvature change. Thereafter, the method simplifies the 

data for different regions separately, which is better to 

keep the detailed feature of original data. However, it can 

be found that the effect of data processing using this 

method is more preferable for the smaller amount of 

point cloud data than for the larger one, and the efficiency 

and accuracy are unable to meet the design requirements. 

Shi in Xi’an Jiaotong University [7] presented a method 

of data reduction based on the remaining features, which 

can not only simplify point cloud data effectively but 

remain the features of original data. This method chooses 

one representative point as the original class and then 

classifies other data into the original class. Afterwards it 

traverses each class as well as replaces the class using the 

obtained local modal points so as to accomplish data 

reduction. The method is able to remain the geometrical 

shape of the original model for the surfaces better with 

larger curvature change and more additional features. 

The common algorithms of data reduction include 

bounding box, random sampling and uniform grid 

method. 

Bounding box algorithm starts at one point of cloud 

data. A certain size of rectangular bounding box is firstly 

established and then divided into some small cubes of 
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uniform size by given ruler. In each cube, the centre point 

of this cube is selected to replace all points in this cube. 

As a result, all points of this cloud point are divided and 

replaced. 

However, the edge length of the bounding box in this 

method is given by user arbitrarily and all cubes are of 

the same size, therefore, it is impossible to ensure the 

reduction accuracy. As for the density data, a centre point 

replacing all the points in the cube will lose more 

important and key points with detailed characters. 

Therefore this method will fail when the complicated 

surface curvature change obviously. 

Random sampling algorithm is relatively simple. It is 

easy to be realized as following. A random function that 

can represent all cloud data points needs to be found first. 

Meanwhile this function can generate random numbers at 

the range of point cloud data. Then, the number of points 

that the point cloud will be left is assumed. Certain 

random numbers produced by the random function which 

represent some points are deleted next. Repeat this step 

until the number of the left points is reduced to a given 

value. This algorithm is simple and easy to be 

implemented. The efficiency of the algorithm is higher. 

However, the shortcoming of this algorithm is more 

obvious. When massive amount of data are reduced, the 

reduction results are close to a uniform simplification 

because of its high randomness. The precision of 

reduction results is uncontrollable and the uniformity of 

the reduced data will be reflected. In the meantime, it is 

difficult to reconstruct a 3D mode due to the possibility 

of presented hole. 

For uniform grid algorithm, it assigns all data points 

into the corresponding grids based on “median filter” 

principle. Then a median point to replace all points in this 

grid was selected. This is an improved bounding box 

algorithm in fact. 

The uniform grid method can overcome some 

shortcomings of the spline curve, the same grid size and 

the grid that is divided too small, easily result in 

producing some empty grids, and a lack of the flexibility 

for capturing the shape will lead to a waste of time and 

space. 

Considering the large quantity of dense points and 

complex surfaces, the above traditional algorithms are not 

good at processing the point cloud data since the features 

of some key positions could be lost. The subsequent 

surface modelling could also be affected and the 

precision of model could not be guaranteed. The main 

reason is that different degrees of data reduction cannot 

be determined according to the different surface features. 

 

2.1 CURVATURE-BASED ALGORITHM OF DATA 

REDUCTION 

 

Because of the insufficiencies of traditional algorithms, 

the algorithm of curvature has been drawn a lot of 

attention by researchers and a number of research 

achievements have been made including neighbourhood 

establishment, curvature estimation and principles for 

reducing data [8, 9]. There are still deficiencies in these 

research achievements in some degree. For example, in 

the principles of data reduction, some mistakes appear 

constantly by using the methods of minimum distance 

and angular deviation. Therefore, this paper proposes a 

curvature algorithm based on paraboloid fitting, which is 

suitable neighbourhood search of even or uneven point 

cloud. In the described algorithm, the mean value of the 

curvature is regarded as a criterion for data reducing and 

data subdivision in which the data are uneven in high 

curvature region. The algorithm is good at dealing with 

the point cloud with complex features and high curvature. 

 

2.2 CURVED SURFACE AND CURVATURE 

 

Curvature is a basis for measuring the uneven degree of 

geometry and reflects important features of the surface. 

The normal curvature at the main direction of one point 

on the surface is regarded as the principal curvature of the 

point. 

Suppose a surface S:r= r(u,v), make v=v0 and fix it, let 

u change, then  a curve, named u-curve, will be drawn by 

r=r(u,v0); Likewise, make u=u0 and fix it, let v change, 

then  a curve, named v-curve, will be drawn by r=r(u0,v). 

Curve u and Curve u form a coordinate network of 

curved lines. The mesh consisting of the line of curvature 

is a coordinate network of curved lines. Setting the 

principal curvatures along the “line” as k1, the principal 

curvatures along the “line v” as k2 and the intersection 

angle between the random direction of surface, d=du:dv, 

and the curve as  , then kn, the normal curvature along 

(d), satisfies the Euler's formula:  2

2

2

1 sincos kkkn  . 

Setting (d)= du:dv as the main direction of curved surface 

s r r u v: ( , )at point P, the principal curvatures along the 

main direction as kN, then the computational formula of 

kN is: 

0
N N

N N

L k E M k F

M k F N k G

 


 
. (1) 

That is: 

2 2 2

( ) ( 2 ) ( ) 0
N N

EG F k LG MF NE k LN M       , (2) 

where E, F, G are first type elements of  surface and L, M,

N are second type elements of surface. 

Suppose k1, k2are two principal curvatures of a point 

on the surface, the k1k2 is called Gaussian curvature of the 

point and recorded as K, that is k= k1k2; the average of the 

curvatures is called mean curvature of this point on the 

surface and recorded as H, that is: 

1 2
2( ) /H k k  , (3) 
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According to the formula of principal curvature and 

Wada's theorem, the formulas of Gaussian curvature are 

shown as:  

2

2

LN M
K

EG F





(Gaussian curvature), (4) 

and 

2

2

2( )

LG MF NE
H

EG F

 



 (Mean curvature). (5) 

2.3 NEIGHBOURHOOD SEARCH 

 

There are several method in solving neighbourhood, 

including line-by-line searching method, neighbourhood 

ball searching method [11], 3D grid searching method 

[12] and the octree searching method [13] etc. Among 

them, line-by-line searching method is only suitable for 

the point cloud with obvious scanning line characteristics, 

such as point cloud by laser scanning. 

For neighbourhood ball searching method, a good 

deal of time and internal storage are occupied during 

searching neighbourhood ball of every point according to 

the radiuses. In addition, this method has the following 

problems while dealing with non-uniform scattering point 

cloud. Since some neighbourhoods probably have no 

point or fewer than three points in small density point 

area, the subsequent curvature estimation could not be 

accomplished. However, in large density point area, some 

neighbourhoods may have too many points, which will 

slow the computational speed. 

For 3D grid searching method, firstly, the measured data 

must be read-in one-dimensional array. Then the 

maximum value and minimum value of the data on the 

coordinate axis of X, Y, Z could be found. The minimum 

space bounding box and the three edges length are 

constructed as following: 

box MAX MIN

box MAX MIN

box MAX MIN

x x x

y y y

z z z

 

 

 







, (6) 

where xmax  is max and xmin is min in X direction; ymax is 

max and ymin is min in Y direction; zmax is max and zmin is 

min in Z direction. xbox, ybox and zbox are edges length in X, 

Y, Z direction respectively.  

In order to ensure that all data points are included in 

the minimum space bounding box, the (6) is revised as: 

( ) 1.1

( ) 1.1

( ) 1.1

box MAX MIN

box MAX MIN

box MAX MIN

x x x

y y y

z z z

  


  
   

. (7) 

Then the minimum bounding box is divided into 

M×N×L small cube grids and the length of edge is 

“cube_size”. The numbers of points included in each 

cube grid are the same. The number of cubic grids in X, Y, 

and Z axis direction are: 

 

_

boxx
M

cube size

 
  
 

, 
_

boxy
N

cube size

 
  
 

, 
_

boxz
L

cube size

 
  
 

, (8) 

 

and its edge length “cube_size” is: 

_ 2 ( )box box box box box box

NUM
cub size x y x z y z

N
        , (9) 

 

where N is the number of points of this cloud point, the 

NUM is the expected number of cubic grid contained 

points. 

In practice, the measured points are non-uniformly 

distributed. Therefore, the number of cubic grid is not 

necessarily the expected number NUM. Hence for 

calculating the edge length of cubic grid, an adjusting 

coefficient   is added. The edge length is adjusted 

dynamically: 

 

_ 2 ( )box box box box box box

NUM
cub size x y x z y z

N
        . (10) 

 

Next, a linked list array List[i][j][k] is established. 

According to the index numbers of the data points in the 

X, Y, Z axial directions, the points are inserted into this 

linked list. For example, the point Pi=(xi,yi,zi), and its 

index number are: 
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_

i MINx x
i

cub size

 
  
 

；
_

i MINy y
j

cub size

 
  
 

；
_

i MINz z
k

cub size

 
  
 

, (11) 

 

and the point Pi is inserted into List[i][j][k]. 

After the list of cube grid is established, searching for 

the nearest neighbour points of each sample point would 

continue and the number of nearest neighbour points is k. 

While establishing a nearest neighbour points linked list 

for every sample point, the distance from the neighbour 

point to base point is calculated, the point into the nearest 

neighbour points list is added based on the distance value. 

The method for searching a nearest neighbour points is, 

firstly its index number is calculated. Secondly, its 

nearest neighbour point is searched in the cube grid 

including itself. But this cubic grid can’t be considered 

alone since no matter how big this cube grid is, the 

neighbour points of sample point are likely to exist in the 

grid adjacent to this grid. For example, when a point is 

located on the faces of the cube, then its neighbour points 

may be found in the other cube which has the same face 

with this cube. Therefore, when searching the k 

neighbour points of a sample points, its twenty six 

adjacent cubes must be searched. 

In the searching process, an adjacent ball is used to 

describe the current k nearest neighbour points. The 

adjacent ball is updated if the nearest neighbour is found. 

Thus, this adjacent ball is always the smallest one that 

contains the searched k neighbouring points. The process 

starts with the searching of the sample points in the cubic 

grids. Then it searches the points in the nearest neighbour 

grid. When a grid is identified, the cubic grid disjointing 

with the current adjacent ball will be removed from the 

grid list. In the meantime, the identified grid will also be 

excluded from the grid list after searching. Likewise, the 

searching will be continued until the grid list becomes 

empty. Such a method guarantees the minimum number 

of checked cubic grids and the improved computational 

efficiency. 

Therefore, the path of an octree for seeking space 

point can be obtained by interpreting the position codes 

in the process of subspace decomposition and 

transforming decomposition range each time. Due to the 

direct relationship of position codes and the position of 

cubes, it can be specified as the position code of a child 

node on X axis plus 1 relative to the adjacent nodes on 

the left side, the one on Y axis plus 2 relatives to the 

adjacent nodes on the bottom, and the one on Z axis plus 

4 relatives to the adjacent nodes on the rear side. 

According to the encoding characteristics of the 

octree, each node of the tree is solely corresponding to a 

8-hexadecimal number coded in binary form based on the 

coordinates of nodes in the divided space. These 

coordinates are calculated as follows: 

 
1 2 1 0

1 2 1 0

1 2 1 0

1 2 1 0

1 2 1 0

1 2 1 0

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

n n k

n n k

n n k

n n k

n n k

n n k

x a a a a a

y b b b b b

z c c c c c

 

 

 

 

 

 

       


      


      

, (12) 

 

where    , , 0,1 , 0,1,..., 1
k k k

a b c and k n   . 

If the number of a cube uniting the octree were known, 

the coordinates can be rewritten as: 

1

1

1

1

1

1

2 2

2 2 2

4 2 2

n
i

i

i

n
i

i

i

n
i

i

i

x q

y q

z q














 




 



 








( mod )

(( / )mod )

(( / )mod )

, (13) 

where n is the depth of the current node. 

The following equation (14) can be obtained based on 

the numbers of cube units in the octree space: 

2 1 02 2 2i i i iq c b a   . (14) 

Likewise, if one sub-cube unit number can be known, 

its coordinate can be calculated inversely using equation 

(13) and (14). Assume the relative coordinate of the node 

in the final bounding box is (x,y,z), 26 relative 

coordinates of the adjacent minimum bounding box can 

be represented by the following equation considering the 

division characteristics of a bounding box space: 





















zz

yy

xx

, (15) 

where ]1,0[ ; x’, y’, z’ and x, y, z cannot be equal 

simultaneously. 

Moreover, for such isolated and sparse noisy points, 

Due to the far distance from other points, their bounding 

boxes for the isolated and sparse noisy points are in 

relatively isolated positions when the divided bounding 

box space or the bounding box contains fewer points. 

Given a threshold value T, any points outside the centre 

with a value less than T are identified. The points 

contained in the bounding box are noisy points and thus 
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can be removed to avoid their impact on the following 

work. 

Further, several issues associated with the partition of 

the space with bounding box are noticed: (a) the positions 

of some bounding boxes are relatively isolated; (b) the 

number of points in the bounding box is less because of 

sparsity, and (c) isolated noisy data points, which are far 

away from other data collection. In order to solve these 

issues, a threshold value “T” is used. If the identified 

points are less than the appointed value after the outward 

expansion of “T” times, the points in the bounding box 

are treated as noisy points that can be deleted.  

Based on aforementioned information, this paper 

proposes an approach that is applicable to search in the 

neighbourhood of uniform and non-uniform distribution 

point clouds. 

Firstly, meshing the point clouds and searching in the 

grids that potentially will lead to avoid calculating the 

distance between Pi and other points. Secondly, the 

maximum and minimum neighbour points are denoted as 

Pi. In the grid that includes the point Pi, once the number 

of points is less than the minimum, one is added to the 

length of a side of the grid in order to expand the grid 

until at least “min” points are searched. If the number of 

points in the grid including the point Pi is greater than the 

max, then the value is kept at the closest to the max. Thus, 

the extreme conditions with either too many or very 

limited number of neighbour points can be avoided. The 

searching process is shown as Figure 1. 

appoint the number m and get the coordinates of Pi , and set  

the number of the table element: k=0, j=1 of chain table in 

neighborhood of  Pi

whether  Pi  is in the grid m

calculate d (Pi , Pj ) and plug d in chain table according 

to the size of order

k≥max

delete the last element of the chain table

whether Pi is the last 

point

j++

k＜min

k++

Y

N

Y

N

Y

N

get the neighborhood of Pi 

N

Y

j=1

add 1 to the length of 

each side of the grid m

 
FIGURE 1 T the process diagram of searching neighbourhood 

 

2.4 CURVATURE ESTIMATION 

 

Curvature estimation, an important algorithm, has 

become the thematic topic in areas such as computer 

vision, computer graphics, geometric modelling and 

bioengineering. The frequently used methods of curvature 

estimation are: paraboloid fitting, circle fitting, Gauss-

Bonnet, Watallable & Belyaev, Taubin, etc. Among these 

methods, Gauss-Bonllet can gain optimal Gauss 

curvature; paraboloid fitting can obtain suboptimum 

Gauss curvature as well as optimal average curvature. 

Particularly, paraboloid fitting has optimal stability in the 

neighbourhood. Thus, paraboloid fitting is adopted in this 

paper. 

Set the paraboloid equation as: 

2 2z ax bxy cy   , (16) 

where x, y and z are three coordinates of points on 

parabolic, and a, b and c are the coefficients of the 

equation. 

There are k points in neighbourhood of Pi. 

The problem to obtain the coefficients a, b and c by 

the least square paraboloid fitting for Pi and its 

neighbourhood essentially is a linear least square problem. 

Householder converter technique can be used to solve the 

linear equations. The process to estimate the curvature of 

arbitrary falls mostly into four steps: 

Step 1: Plug Pi and the points in its neighbourhood into 

(16). Then the equation set is obtained as follows: 

AX=Z, (17) 

where A is the transformation matrix composed of Pi and 

K points’ x and y coordinates in the neighbourhood of Pi: 

2 2

1 1 1 1

2 2

2 2 2 2

2 2

1 2 2 1 ( 1) 3k k k

x x y y

A x x y y

x x y y   

 
 

  
 
 

. (18) 

X is the transposed matrix of the parabola coefficients: 

X={a,b,c}T. (19) 

Z is the transposed matrix consists of Pi and K points’ z 

coordinate in the neighbourhood of Pi: 

1 2 1, 1
, , ,

T

k k
Z z z z  
 . (20) 

Step 2: Solve (18) and (17) using Householder converter 

technique and obtain the coefficients a, b, and c of the 

paraboloid equation. 

According to the properties of parabola, we can obtain: 

K=4ac-b2      (Gaussian curvature), (21) 

and 

H=a+c (Mean curvature). (22) 
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Step 3: Repeat steps 1 and 2 until the Gaussian curvatures 

and the average curvatures of all points are obtained. 

 

2.5 IMPLEMENTATION OF THE ALGORITHM 

 

It is common that the point clouds are reduced according 

to the curvature when reconstructing their surface. The 

basic principle is to keep a small number of points in a 

small curvature zone and sufficient points in large 

curvature zone for reserving the detailed feature of the 

surface. The method cannot only reduce the number of 

the points effectively but also keep the features of the 

surface accurately. In this paper, a module for reducing 

point clouds based on the curvature has been developed, 

and the procedure of the algorithm is described below. 

Firstly, divide the value of the curvature into many 

intervals and set the deviation ε based on the curvature. T 

special condition that the value of the curvature 

approaches zero (that is, the curve is similar to the line) 

must be considered. 

Secondly, setting the curvature deviation as   within 

one interval. If the point Pi meets the criteria deviation: 

|Hj-Hi |≤   (Hj and Hi are the average curvature of Pj and 

Pi, respectively) then delete the point Pj. Otherwise, keep 

the point Pj and set it as the datum point. Repeat this 

process. This principle cannot only reduce the quantity of 

the point clouds but also retain the geometrical features 

of the point clouds better.  

The specific realization process is to: (1) search the 

neighbourhood of each point in point clouds; (2) estimate 

the curvature in neighbourhood while searching; and (3) 

reduce the quantity of the points according to the reduced 

principle in the condition of ensuring the accuracy. The 

process is illustrated in Figure 2. 

 

mesh the point cloud

get the neighborhood of pi 

least square fit paraboloid

get the curvature of  pi

whether the point is 

the last point

calculate the curvature of the 

point cloud

reduce the point cloud 

according to the curvature

Y

N

 
FIGURE 2 The process diagram of reducing point clouds 

3 Reducing the point cloud of roller bit 

 

In this paper, the method mentioned above is used to 

reduce the point clouds of roller bit, and the result is 

shown as Figures 3 and 4. 

 

 
FIGURE 3 The point clouds of roller bit before reducing 

 
FIGURE 4 The point clouds of roller bit after reducing 

 

4 Conclusions 

 

For parts with complex surface in RE process, if the 

density of metrical data is high, the efficiency of 

computer is relative low in terms of running, storage and 

operation. In addition, the smoothness of the 

reconstructed surface is affected. 

This paper focuses on the pros and cons of common 

algorithms so as to reduce point clouds. It also proposes a 

new reducing algorithm based on the curvature change.  

The case study illustrates that the proposed method 

performs well in reducing the point clouds with complex 

surface. Detailed features of the original data are better 

maintained on the premise of guaranteeing the accuracy 

and the quantity of the point clouds. These features are 

very important for further reconstructing surface. 
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